dp53 Restrains Ectopic Neural Stem Cell Formation in the Drosophila Brain in a Non-Apoptotic Mechanism Involving Archipelago and Cyclin E

نویسندگان

  • Yingshi Ouyang
  • Yan Song
  • Bingwei Lu
چکیده

Accumulating evidence suggests that tumor-initiating stem cells or cancer stem cells (CSCs) possibly originating from normal stem cells may be the root cause of certain malignancies. How stem cell homeostasis is impaired in tumor tissues is not well understood, although certain tumor suppressors have been implicated. In this study, we use the Drosophila neural stem cells (NSCs) called neuroblasts as a model to study this process. Loss-of-function of Numb, a key cell fate determinant with well-conserved mammalian counterparts, leads to the formation of ectopic neuroblasts and a tumor phenotype in the larval brain. Overexpression of the Drosophila tumor suppressor p53 (dp53) was able to suppress ectopic neuroblast formation caused by numb loss-of-function. This occurred in a non-apoptotic manner and was independent of Dacapo, the fly counterpart of the well-characterized mammalian p53 target p21 involved in cellular senescence. The observation that dp53 affected Edu incorporation into neuroblasts led us to test the hypothesis that dp53 acts through regulation of factors involved in cell cycle progression. Our results show that the inhibitory effect of dp53 on ectopic neuroblast formation was mediated largely through its regulation of Cyclin E (Cyc E). Overexpression of Cyc E was able to abrogate dp53's ability to rescue numb loss-of-function phenotypes. Increasing Cyc E levels by attenuating Archipelago (Ago), a recently identified transcriptional target of dp53 and a negative regulator of Cyc E, had similar effects. Conversely, reducing Cyc E activity by overexpressing Ago blocked ectopic neuroblast formation in numb mutant. Our results reveal an intimate connection between cell cycle progression and NSC self-renewal vs. differentiation control, and indicate that p53-mediated regulation of ectopic NSC self-renewal through the Ago/Cyc E axis becomes particularly important when NSC homeostasis is perturbed as in numb loss-of-function condition. This has important clinical implications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dronc caspase exerts a non-apoptotic function to restrain phospho-Numb-induced ectopic neuroblast formation in Drosophila.

Drosophila neuroblasts have served as a model to understand how the balance of stem cell self-renewal versus differentiation is achieved. Drosophila Numb protein regulates this process through its preferential segregation into the differentiating daughter cell. How Numb restricts the proliferation and self-renewal potentials of the recipient cell remains enigmatic. Here, we show that phosphoryl...

متن کامل

Antibacterial and anti-cancer activities of Artemisia turcomanica extract on gastric cancer cell line (AGS) and its interaction on cyclin D1 and cyckin E genes

Background: The use of medicinal herbs in traditional medicine has been important and many of these plants have antioxidant, anti-inflammatory, antimicrobial and anti-cancer effects. Objective: The aim of this study was to evaluate the antibacterial and anti-cancer effects of Artemisia turcomanica extract on gastric cancer cell line (AGS) and its effect on expression of cyclin D1 and cyclin E g...

متن کامل

The archipelago Tumor Suppressor Gene Limits Rb/E2F-Regulated Apoptosis in Developing Drosophila Tissues

BACKGROUND The Drosophila archipelago gene (ago) encodes the specificity component of a ubiquitin ligase that targets the cyclin E and dMyc proteins for degradation. Its human ortholog, Fbw7, is commonly lost in cancers, suggesting that failure to degrade ago/Fbw7 targets drives excess tissue growth. RESULTS We find that ago loss induces hyperplasia of some organs but paradoxically reduces th...

متن کامل

Identification and characterization of a p53 homologue in Drosophila melanogaster.

The tumor suppressor gene p53 in mammalian cells plays a critical role in safeguarding the integrity of genome. It functions as a sequence-specific transcription factor. Upon activation by a variety of cellular stresses, p53 transactivates downstream target genes, through which it regulates cell cycle and apoptosis. However, little is known about p53 in invertebrates. Here we report the identif...

متن کامل

Notch-dependent expression of the archipelago ubiquitin ligase subunit in the Drosophila eye.

archipelago (ago)/Fbw7 encodes a conserved protein that functions as the substrate-receptor component of a polyubiquitin ligase that suppresses tissue growth in flies and tumorigenesis in vertebrates. Ago/Fbw7 targets multiple proteins for degradation, including the G1-S regulator Cyclin E and the oncoprotein dMyc/c-Myc. Despite prominent roles in growth control, little is known about the signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011